Extensions 1→N→G→Q→1 with N=C2 and Q=C23.6D6

Direct product G=N×Q with N=C2 and Q=C23.6D6
dρLabelID
C2×C23.6D648C2xC2^3.6D6192,513


Non-split extensions G=N.Q with N=C2 and Q=C23.6D6
extensionφ:Q→Aut NdρLabelID
C2.1(C23.6D6) = (C22×S3)⋊C8central extension (φ=1)48C2.1(C2^3.6D6)192,27
C2.2(C23.6D6) = (C2×Dic3)⋊C8central extension (φ=1)96C2.2(C2^3.6D6)192,28
C2.3(C23.6D6) = C24.13D6central extension (φ=1)48C2.3(C2^3.6D6)192,86
C2.4(C23.6D6) = C6.C4≀C2central stem extension (φ=1)48C2.4(C2^3.6D6)192,10
C2.5(C23.6D6) = C4⋊Dic3⋊C4central stem extension (φ=1)48C2.5(C2^3.6D6)192,11
C2.6(C23.6D6) = C23.35D12central stem extension (φ=1)48C2.6(C2^3.6D6)192,26
C2.7(C23.6D6) = C22.2D24central stem extension (φ=1)48C2.7(C2^3.6D6)192,29
C2.8(C23.6D6) = C3⋊C2≀C4central stem extension (φ=1)248+C2.8(C2^3.6D6)192,30
C2.9(C23.6D6) = (C2×D4).D6central stem extension (φ=1)488-C2.9(C2^3.6D6)192,31
C2.10(C23.6D6) = C23.D12central stem extension (φ=1)488-C2.10(C2^3.6D6)192,32
C2.11(C23.6D6) = C23.2D12central stem extension (φ=1)248+C2.11(C2^3.6D6)192,33
C2.12(C23.6D6) = C23.3D12central stem extension (φ=1)248+C2.12(C2^3.6D6)192,34
C2.13(C23.6D6) = C23.4D12central stem extension (φ=1)488-C2.13(C2^3.6D6)192,35
C2.14(C23.6D6) = (C2×C4).D12central stem extension (φ=1)488+C2.14(C2^3.6D6)192,36
C2.15(C23.6D6) = (C2×C12).D4central stem extension (φ=1)488-C2.15(C2^3.6D6)192,37

׿
×
𝔽